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Various types of spatiotemporal behavior are described for two-dimensional networks of excitatory
and inhibitory neurons with time delayed interactions. It is described how the network behaves as
several structural parameters are varied, such as the number of neurons, the connectivity, and the
values of synaptic weights. A transition from spatially uniform oscillations to spatiotemporal chaos
via intermittentlike behavior is observed. The properties of spatiotemporally chaotic solutions are
investigated by evaluating the largest positive Lyapunov exponent and the loss of correlation with
distance. Finally, properties of information transport are evaluated during uniform oscillations
and spatiotemporal chaos. It is shown that the diffusion coefficient increases significantly in the
spatiotemporal phase similar to the increase of transport coefficients at the onset of fluid turbulence.
It is proposed that such a property should be seen in other media, such as chemical turbulence
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or networks of oscillators.
experiments is also discussed.

The possibility of measuring information transport from appropriate
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INTRODUCTION

Neurons of the cerebral cortex are characterized by a
marked tendency to participate in coherent oscillatory
behavior of various frequencies. Oscillations in the 30—
60 Hz range can be seen in relation to the processing of
sensory information (reviewed in [1]), delta (0.5-4 Hz)
and spindle (7-14 Hz) oscillations are mostly seen during
slow-wave sleep [2]. Measurements of the global activity
of the brain, such as the field potentials or electroen-
cephalograms, display indisputable periodicities but are
nevertheless characterized by a high variability. In some
cases, these global variables were shown to have very sim-
ilar statistical and geometrical properties as deterministic
chaos [3-6].

At the cellular level, trains of spikes produced by corti-
cal neurons can be recorded extracellularly in awake ani-
mals, and show a considerable amount of variability (see
Ref. [7] and references therein). These trains of spikes are
usually analyzed as stochastic processes. During sleep, as
more synchronized oscillatory activity sets in, the activ-
ity of single cortical neurons becomes more phasic, but
is still characterized by a high variability [8].

The mechanisms that are thought to generate os-
cillatory activity are twofold. First, oscillations can
be generated as an intrinsic property of the neurons.
Most of central neurons are characterized by a set of
voltage-dependent conductances that confer to the cells
very complex properties of electroresponsiveness, includ-
ing bursts of spikes and sustained oscillations (reviewed
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in [9,10]). It is now largely admitted that the origin of
at least some of the oscillatory phenomena seen in the
cortex cannot be dissociated from these intrinsic cellular
properties [10]. Several models were proposed to account
for oscillatory behavior from the interaction between neu-
rons endowed with complex intrinsic properties (see for
example Refs. [11,12]).

Second, coherent oscillations were also shown to
depend highly on the presence of synaptic connec-
tions [10,13], as they can disappear if synaptic inter-
actions are blocked by pharmacological means (see for
example Ref. [14]). In models, coherent oscillations can
also arise as collective property of a network of neurons in
which individual units do not display intrinsic properties
other than conventional excitability [15-20]. In this case,
oscillations arise from the interplay of excitatory and in-
hibitory feedback provided by synaptic connections.

In this paper, we examine oscillatory phenomena of
the latter kind. The particular case of isotropic networks
of excitatory and inhibitory neurons is considered and is
shown to generate a variety of oscillatory and complex
spatiotemporal phenomena. Several properties of spa-
tiotemporal chaos are shown to be qualitatively similar
to turbulence in other isotropic media and possible ex-
perimental applications are discussed.

In Sec. I, the equations and the architecture of the
network are defined; in Sec. II, the various types of spa-
tiotemporal dynamics are described; in Sec. III, vari-
ous methods are applied to characterize spatiotemporally
chaotic phenomena.

I. ARCHITECTURE OF THE NETWORK

If the neuron is described by a single compartment
containing a passive (leak) current and several synapses
converging onto it, then a network of N excitatory and
M inhibitory of such neurons can be described by
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where X; and Y; represent the membrane potential of excitatory and of inhibitory neurons, respectively, C,, = 1
pF/cm? is the spec1ﬁc membrane capacitance, g; = 0.25 mS/cm? is the leakage conductance, and V;, = —60 mV
1s the leakage potentlal The values chosen here are typical values of the neuronal membrane (see Ref. [21]). gE,
giE, ng , and g} J are the synaptic conductances for excitatory-to-excitatory (EE), inhibitory-to-excitatory (IE),
excitatory-to-inhibitory (EI), and inhibitory-to-inhibitory (II) interactions. Vg = 50 mV and V; = —80 mV are the
equilibrium potentials for synaptic excitation and inhibition.

Synaptic interactions are described by using a sigmoid-type function for expressing the synaptic conductance as a
function of the presynaptic membrane potential:

gki = const X F(Xi(t — 7)),
()
1
1+ exp[—(X + 25)/5]’

F(X) =

where X, is the potential of the presynaptic neuron and 7 = 2 ms is the time delay due to signal propagation and
synaptic transmission. This sigmoid function F gives the output activity of the neuron in function of its potential X.
For the most negative values of the potential, the neuron is silent and F ~ 0. Above a threshold value of V ~ —50 mV,
the output activity of the neuron increases and saturates to a maximum value of F' ~ 1 for higher potentials. Such a
sigmoid type of synaptic interaction is commonly used in neural network models [16,18,22].

Assuming the identity of all synaptic conductances of the same type (e.g., EE, IE, EI, or II), leads to the following

set of equations:

ax;
dt

ay;

dt

where the conductances have been renormalized by C,,,
which leads to the following set of parameters (in ms™!):
Y= gL/C"U wp = gEE/Cm7 w2 = gIE/Cma w3 =
9E1/Cm, and wy = g11/Crp. The time delays 7;; depend
on the distance between the two neurons (see below).
The sums run over the presynaptic neurons connected
to each cell. This system is a generalization of models
introduced previously [16,18,23-25].

Following the proportion of excitatory and inhibitory
neurons, different schemes of connectivity can be consid-
ered. In this paper, we restricted our study to simple
networks with uniform properties. The neurons are on
a regular two-dimensional lattice and the connectivity is
the same for each neuron. Connections are made locally,
i.e., any given neuron connects all neurons laying within
some neighborhood around itself. This type of connec-
tivity has some analogies with the connectivity of the
cerebral cortex for which neurons usually give numerous
axon collaterals within some distance around them [26].

Two types of architecture are considered here and are
shown in Fig. 1. Type 1 connectivity [Fig. 1(a)] corre-
sponds to a network of NV excitatory and NN inhibitory

L =y (Y; - Vi) — (Y; — Ve) w3 Y F(Xi(t —7h5)) —
k

—y (Xi = VL) = (Xi = V) w1 Y F(Xi(t — i) — (Xi = Vi) w2 Y F(Yi(t — ),
k

1

(Y; — Vi) wa Y F(Yi(t — 75)), (3)
1

cells, constituted of pairs of interconnected excitatory
and inhibitory cells with connections between excita-
tory cells which may extend over longer distances. This
type of connectivity was already considered in a previous
study [25]. Type 2 connectivity [Fig. 1(b)] considers a
different spatial arrangement of cells, specific to architec-
tures where the proportion of excitatory and inhibitory
cells mimics that of the cerebral cortex, which was found
of about 75%-25% [27].

The connectivity is defined using a Hamming metric
on the network. The distance between two neurons is
counted as the sum of the difference between their coor-
dinates. The time delay was chosen proportional to this
distance. For a distance of 1 between neurons ¢ and j,
7;; = 2 ms; for a distance of 2, 7;; = 4 ms, etc.

In this paper, the two mostly used connection patterns
are the nearest-neighbor and the secondary-neighbor con-
ditions. In the first case, every cell is connected to its
nearest neighbors, as illustrated in Fig. 1. This corre-
sponds to the set of connections of maximal distance
equals to unity. In the case of secondary neighbor, every
cell is connected to its nearest neighbors, plus the nearest
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FIG. 1. Two different types of architecture of a network of excitatory and inhibitory neurons. For each type of architecture
a few neurons are represented to illustrate the connectivity. Neurons are symbolized by shaded circles and connections by
straight lines (see legend). (a) Type 1 connectivity. The network consists of a series of pairs of excitatory and inhibitory
neurons arranged on a two-dimensional lattice. Connections between adjacent pairs are made between excitatory neurons only.
(b) Type 2 connectivity. Excitatory and inhibitory neurons are in the ratio of 75% to 25%, and are equally distributed on the
two dimensional network. For each type of architecture, only nearest-neighbor connections have been represented for simplicity.

neighbors of these, leading to a more extended pattern
of connectivity including connections over one and two
units of distance.

The boundary conditions of the network are chosen
such that each neuron of the border has an equivalent
connectivity as every other neuron in the network. The
first type of such conditions is periodic boundaries, in
which cells on the border connect those of the opposite
border. Another possibility is to reflect the connection
back in the network. According to such reflective bound-
aries, a connection to a neuron that lies outside the net-
work is instead connected to the mirror image of that
neuron in the network. In the case of nearest-neighbor
connectivity, these conditions are equivalent to null flux
conditions. Although both types of boundary conditions
gave very similar results [28], only the latter are consid-
ered in the following.

The dynamical behavior of systems described by
Eq. (3) was found to be essentially dependent on the
number of neurons, the connectivity pattern, and the val-
ues of the synaptic weights. In the following section, the
effect of some these parameters is described. In all cases,
numerical simulations showed that the behavior of the
network was remarkably robust to changes in the values
of the other parameters, including the time delay (see
also Refs. [24,25]).

Numerical integration of the equations was done us-
ing a Runge-Kutta algorithm with constant time steps,
modified for delay differential equations. The values of
the stationary states, the positions of the bifurcations,
and the stability of the uniform periodic oscillations as
obtained from stability analysis were always verified nu-
merically. This is an important check, not only for the

stability analysis, but also for the numerical integration
of delay differential equations, which can be unstable, or
give rise to long transients. Numerical simulations were
always found to coincide perfectly with the results of the
stability analysis of both fixed points and the uniform
periodic oscillation [25,28].

II. SPATIOTEMPORAL DYNAMICS

The dynamical behavior of networks described by
Eq. (3) are essentially dependent on the total number
of neurons, on how they connect themselves, and on the
value of the coupling between them. In this section, the
dynamical behavior of Type 1 and Type 2 networks is
described, for different sizes and different values of the
excitatory-to-excitatory synaptic weight, ;. The se-
quence of dynamical behavior presented here is repre-
sentative of both Type 1 and Type 2 networks.

A. Resting stationary state

Synaptic interactions typically have a threshold. There
exists a region of the membrane potential for which the
coupling between cells is close to zero. Such a region is
typically around the resting membrane potential, V. As
F(VL) ~ 0, the uniform resting state {X; ~ Vi, Y; ~ Vi }
is usually a stable equilibrium.

However, such a stationary state may become unsta-
ble, partly because of the presence of the time delay and
for sufficiently large values of synaptic weights [16]. In a
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previous paper [24)], it was shown that a simple system of
two interconnected neurons, described by the same delay
equations as Eq. (3) with N = M = 1, displays multi-
stability and limit cycle oscillations. For large values of
synaptic weights, it was found that the resting stationary
state becomes unstable at some critical value Q¥ through
a Hopf bifurcation. The limit cycle can also lose stability
(at critical point QF). For Q; > QF, both neurons were
shown to be in a tonic stable stationary state, in which
both cells are close to maximal activation.

The same solutions exist in the network if the condi-
tions of connectivity are uniform, which is the case here.
Equations (3) admit uniform solutions which are inde-
pendent of the size of the system. On the other hand,
the stability of these uniform solutions is not necessar-
ily independent of the size of the system [25]. For fixed
points, a stability analysis [29] showed that the stability
of fixed points is independent of the size of the system.

Therefore, the typical equilibrium behavior of the sys-
tem as a function of {2, is as follows: a resting stationary
state which is stable for small values of ; (22; < QF)
and a tonic stationary state which is stable for the highest
values of 2; (2, > QF). In between these two station-
ary states, there exists a range of ; for which dynamical
solutions can appear. These dynamical solutions are de-
scribed in the following sections.

B. Uniform periodic oscillations

In a previous paper [25], it was shown that Egs. (3) ad-
mit spatially uniform periodic solutions in which stability
depends on the size of the network. As outlined above,
these periodic oscillations arise following the destabiliza-
tion of the uniform resting stationary state through a
Hopf bifurcation. This type of oscillation is character-
ized by a perfect synchrony between neurons (Fig. 2).

For Type 1 connectivity, the stability of this uniform
periodic solution was investigated by using a discretiza-
tion method [25]. The system was linearized around the
periodic solution, and discretized such as to obtain a
mapping of the system over one period of the oscillation.
The eigenvalues of the corresponding matrix are shown
in Fig. 3. It was shown that the uniform periodic solution
is stable only for small systems of neurons (N < 9). For
larger sizes, the stability analysis shows that uniform pe-
riodic solution loses stability. Numerical simulations [25]
confirmed this analysis and showed that for larger sizes,
the network is characterized by the apparition of spa-
tiotemporally structured behavior, such as spiral waves
or spatiotemporal chaos (see following sections).

From numerical simulations of Type 2 networks, a
qualitatively similar behavior is observed. For small net-
works, the network displays a uniform periodic oscillation
in which excitatory neurons oscillate in phase (Fig. 2).
This oscillation is always present for networks of small
sizes. Similar to Type 1 networks, this periodic oscilla-
tion was found to lose stability for higher size networks
(N =144 and M = 36) [30]. In the following section, we
describe spatiotemporal solutions appearing in networks
of larger size.

C. Intermittentlike behavior

As Q; exceeds some critical value 21, the stability anal-
ysis (for Type 1 connectivity) and numerical simulations
show that periodic and stationary uniform solutions are
unstable. As no other uniform solution exists, the system
must necessarily adopt a nonuniform solution. Close to
this critical value Qf, numerical simulation shows inter-
mittentlike behavior (Fig. 4). Periods of uniform oscil-
latory regime alternate with periods of a more complex
oscillatory behavior. A phase portrait shows that trajec-
tories follow closely the uniform limit cycle, and make
frequent “excursions” into another region of phase space
before returning in the vicinity of the uniform solution.

Figure 4 also shows that the more complex oscillatory
regime is characterized by a spatially nonuniform pattern
of oscillations. In the following section, these nonuniform
patterns are investigated in more detail.

Very close to the critical point !, the dynamics is
largely dominated by the uniform oscillatory regime,
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FIG. 2. Synchronized oscillation in the network. (a) Activ-
ity of ten excitatory cells randomly chosen in the network. (b)
Phase portrait between two excitatory cells (X; and X32). (c)
Phase portrait between a pair of excitatory and inhibitory
cells (X; and Y;). Type 2 connectivity with N = 100,
M = 25, and nearest-neighbor connections. $2; = 14.25,
Qg = Qs = 12‘5, and 94 =0.
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FIG. 3. Instability of the uniform periodic oscillations as a
function of the size of the network. Ap is the maximal eigen-
value of the evolution matrix of the system after discretiza-
tion. Ap is represented as a function of N for three values
of excitatory synaptic weights ; = 12.565 (squares, dashed
lines), ; = 13.91 (triangles, dotted lines), and Q; = 15.27
(circles, continuous lines). For 2, = 12.565 and Q; = 13.91,
Ap remains lower than unity and the uniform periodic so-
lution is stable for all sizes considered. For ; = 15.27, the
uniform periodic solution is stable for small networks (Ap < 1
for N < 9) and loses stability for larger networks (Ap > 1 for
N > 9). This stability analysis was performed for Type 1
networks with nearest-neighbor connections, Q2 = Q3 = 12.5

and Q4 = 0. Modified from Ref. [25].
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FIG. 4. Intermittentlike behavior of the network. (a) Ac-
tivity of ten excitatory neurons. (b) Phase portrait between
two excitatory cells (X; and X2). (c) Phase portrait between
a pair of excitatory and inhibitory cells (X, and Y;). Param-
eters are identical to Fig. 2 with ; = 14.4. The dynamics
alternates between a quasiuniform oscillation and brief excur-
sions to other regions of phase space.

making rare excursions into more complex oscillatory be-
havior. For increasing values of ©; > Q{ , periods of uni-
form oscillatory regime become less and less prominent.
There exists a critical value Q7 for which the uniform
oscillation does not appear anymore. In this case, the
system displays a nonuniform behavior which can be pe-
riodic or irregular, depending on the size of the system.
These nonuniform solutions are described in the following
sections.

D. Spiral and rotating waves

For moderate sizes of the system (/N ~ 100), and for
Q; > QF | stable rotating and spiral waves were observed
for both types of architecture (Fig. 5). In this case, the
trajectories converge towards a limit cycle which is dif-
ferent from the uniform limit cycle [Figs. 5(b) and 5(c)].
This nonuniform limit cycle is in a region of phase space
which seems to correspond to the excursions of intermit-
tentlike behavior (see preceding section).

The spatial portrait of spiral and rotating waves is a de-
polarizing wave of activity, which propagates in a rotat-
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FIG. 5. Cellular activity during rotating or spiral waves.
(a) Activity of 10 excitatory neurons. (b) Phase portrait be-
tween two excitatory cells (X; and X:). (c) Phase portrait
between a pair of excitatory and inhibitory cells (X; and Y1).
Parameters are identical to Fig. 2 with Q; = 15. The rotating
wave corresponds to a nonuniform periodic solution as shown
by the phase portraits.
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(b)
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FIG. 6. Complex spatiotemporal patterns
in N = 100 and N = 400 networks. Suc-

cessive frames represent snapshots of the ac-
tivity of the system taken at fixed time in-
tervals. For each frame, only the activ-
ity of excitatory neurons is represented as
a two-dimensional array of shaded squares.
The value of the membrane potential for each
neuron is shown as a gray scale ranging in
ten steps from —75 mV (white) to 50 mV
(black). (a), (b) Rotating spiral waves with
a period of approximately 25 ms (4 ms be-
tween frames). Type 2 (a) and Type 1 (b)
networks with V = 100 and nearest-neighbor
connections. (c) Transient spiral wave (10
ms between frames). Type 2 network with
N = 400 and nearest-neighbor connections.
(d), (e) Spatiotemporal chaos (10 ms between
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ing fashion, with a period close to 25 ms [Figs. 6(a) and
6(b)]. In the vicinity of the depolarizing front, some cells
are moderately depolarized while others are hyperpolar-
ized. For Type 2 connectivity, it is frequent to observe a
“checkerboard” pattern of activity, in which neighboring
cells are in opposition of phase.

The rotating direction of the spiral wave entirely de-
pends on the initial conditions, with an equal probability
for both possible directions. There exists at least two co-
existing stable limit cycles associated with spiral waves.

For larger sizes of the network (from N ~ 400), spiral
waves appear transiently [Fig. 6(c)] but were never ob-
served as a stable phenomenon. For example, for Type 2
connectivity with N = 400 and nearest-neighbor con-
nections, no stable spiral wave could be observed, even
though multiple initial conditions were used. In this case,
the system behaves irregularly both in space and in time.
Such irregular solutions are described in the following
section.

E. Spatiotemporal chaos

Irregular spatiotemporal activity occurs for networks
of both architectures and for relatively large sizes. This
type of spatiotemporal chaotic activity is characterized
by a multitude of depolarizing fronts that propagate in
all directions and in an apparently disordered fashion
[Figs. 6(d), 6(e), and 7(b)]. These excitation waves col-

frames). Type 1 (d) and Type 2 (e) net-
works with N = 400 and secondary-neighbor
connectivity. All simulations were done with
Ql = 15, Qz = Qa = 12.5, and Q4 =0.

lapse with each other while new waves are spontaneously
appearing. This chaotic type of activity is also seen at
the cellular level at which individual neurons behave ape-
riodically [Fig. 7(a)]. These patterns are reminiscent of
those seen in chemical turbulence [compare Fig. 7(b) with
patterns seen in Ref. [31])].

The spatiotemporal dynamics of a larger size network
are quite similar to smaller sizes with the same architec-
ture [compare Fig. 6(e) with Fig. 7]. Depolarizing fronts
are of comparable size. On the other hand, the architec-
ture of the network seems to play a more determinant
role on the type of patterns seen [compare Fig. 6(d) with
Fig. 6(e)].

Phase portraits of spatiotemporal chaos show trajec-
tories in a region of phase space which seems close to
that of spiral waves [compare Figs. 5(b) and 5(c) with
Fig. 8]. However, in this case, the trajectories are very
irregular although they were similar for different network
sizes (Fig. 8).

III. CHARACTERIZATION OF
SPATIOTEMPORAL CHAOS

In this section, the loss of correlation with distance and
the existence of a positive Lyapunov exponent are shown
for the spatiotemporally chaotic solutions of Type 2 net-
works. The properties of information transport are also
used to compare the uniform oscillation with more com-
plex spatiotemporal dynamics.
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A. Loss of correlation with distance

Figure 7(a) shows that neighboring cells are relatively
correlated while randomly chosen cells seem to behave
independently. Two methods are applied for quantify-
ing this loss of correlation. First, the cross correlation
function Cxy (7) between two variables X and Y can be
written as

_JEXO - (X)) (V1) - (V) dt

FX(0) - (X)) de @

ny(’r)

where (X) and (Y') are the average values for X and Y,
respectively.

Second, the time-delayed mutual information between
these two variables can be defined as [32]

Ixy(r) = /P(w,y,’r) log, 11;((;)’—31’;(;)) dedy,  (5)

FIG. 7. Spatiotemporal chaos in a N = 6400 network.

(a) Membrane potential of ten excitatory neurons. From
top to bottom: four neighboring neurons and six randomly
chosen neuroms. (b) Snapshots of activity of the system
(16 ms between frames from top to bottom). Type 2 sec-
ondary-neighbor connections with N = 6400, M = 1600,
Q, =15, Q; = Q3 = 12.5, and Q24 = 0. Numerous depo-
larizing waves are propagating in all directions, giving rise to
an irregular dynamics.

X, -
T
40 l 40
Y, -10f LYy 10
601 60
60 -10 40 60 -10 40
X, X

FIG. 8. Phase portraits during irregular spatiotemporal
behavior. Two excitatory cells, X; and X, are represented
in (a) and (c). An excitatory and an inhibitory cell, X; and
Y1, are displayed in (b) and (d). Type 2 networks were simu-
lated with NV = 400, M = 100 for (a) and (b), and N = 6400,
M = 1600 for (c) and (d). Secondary-neighbor connectivity
with €; = 15, Q2 = Q3 = 12.5, and Q4 = 0.

where P(z) and P(y) are the probability of observing the
values X = = and Y = y independently. P(z,y,7) is the
joint probability of observing the values X (t) = z and
Y (t + 7) = y conjointly. If the logarithm is expressed in
base 2, then Ixy (7) is in units of bits.

These two functions were evaluated from the network
with N = 6400 and M = 1600 and are displayed in
Fig. 9. The loss of correlation appears strikingly when
two neighboring cells are compared to two distant cells
in the network. The cross correlation and the mutual
information between two neurons vanish progressively as
the distance between these neurons increases.

B. Largest positive Lyapunov exponent

The transition to spatiotemporal chaos strongly de-
pends on the size of the system as well as its connectiv-
ity. In general, the simulations showed that there exists a
critical size at which spatiotemporal chaos appears. This
critical size depends on the connectivity and the architec-
ture of the network. When the connectivity is increased,
this critical size also increases.

The distinction between periodic phenomena, such as
uniform oscillations, and irregular phenomena, such as
spatiotemporal chaos, can be based on the estimation
of the largest Lyapunov exponent. For a network of
N variables X;, ¢ = 1,..., N, the largest Lyapunov ex-
ponent can be defined as follows. Let X;(0) be an
initial condition of the system, and X/(0) another ini-
tial condition, very close to X;(0), such as the distance
€(0) = >, (X:(0) — X!(0))? << 1. If the system is char-
acterized by spatiotemporal chaos, then the distance be-



tween these two conditions is expected to increase expo-
nentially. Therefore, the largest Lyapunov exponent [33]
is defined by

.1 €(t)
A=lim 21020
i D SAKO KO
t—oo t Ei (Xt(O) b X:(O))

We verified that this distance increased exponentially. A
positive value of the exponent A was estimated from the
relation above, and was found to be insensitive to the
particular initial condition chosen. Figure 10 summarizes
the values obtained for different sizes and connectivities.
At the critical size, A jumps to a positive value. This crit-
ical size was estimated as IV = 144 for nearest-neighbor
connections, and N = 400 for secondary-neighbor. For
denser connectivities, we could not observe any spa-
tiotemporally chaotic behavior for N < 6400.

An important property is to be mentioned here. Dur-
ing spatiotemporal chaos, the distance €(t) increases ex-
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FIG. 9. Loss of correlation with distance during irregular
spatiotemporal behavior. (a) Cross correlation and (b) mu-
tual information. These functions evaluated for two neighbor-
ing excitatory cells (Xss5, Xs6) are represented by continuous
lines. The values obtained from two excitatory cells separated
by 16 intercellular distances (Xs5, X335) are shown by dotted
lines. A total time of 10800 ms was simulated using a N = 400
and M = 100 Type 2 network with secondary-neighbor con-
nections and with 2, = 15, Q2 = Q3 = 12.5, and Q4 = 0.
The mutual information was evaluated using an algorithm
developed by Fraser and Swinney [32].
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FIG. 10. Largest Lyapunov exponent as a function of the
size of the network. The exponent (\) is represented as a
function of v/N/2 for Type 2 networks (M = N/4, Q; = 15,
Q2 = Q3 = 12.5, and Q4 = 0). The exponent was calculated
for networks with nearest-neighbor connections (squares) and
secondary-neighbor connections (triangles). For small sizes,
only periodic solutions are observed and the resulting expo-
nent is zero. Spatiotemporal chaos is seen for higher sizes
(positive values of ).

ponentially over a relatively long time. During stable uni-
form oscillations, €(t) decreases and attains an approxi-
mately constant value after a few periods of the oscilla-
tion. This is the expected behavior during a convergence
to a limit cycle. However, €(t) has a more interesting
behavior in the case of spiral waves. €(t) increases ex-
ponentially during a few periods of the oscillation, then
saturates at some ceiling level, giving a null Lyapunov
exponent. The initial exponential increase corresponds
to irregular transients, and the saturation occurs when
the spiral wave stabilizes. Interestingly, the Lyapunov
exponent during these transients is of the same order as
that evaluated during spatiotemporal chaos.

C. Information transport

In this section, we estimate the information transport
properties of a Type 2 network, following a method devel-
oped by Vastano and Swinney [34]. Vastano and Swinney
considered a one-dimensional chain of coupled oscillators,
in which every element was constituted by three nonlin-
ear differential equations in limit cycle conditions, ex-
cept for some oscillators which were in chaotic conditions.
They showed that the spatial propagation phenomena in
this system have analogies with a diffusion equation for
mutual information. Similar considerations were also ap-
plied for other systems with coupled oscillators [35] or
logistic maps [36].

We consider here the case of a N = 100 and M = 25
Type 2 network submitted to an irregular input, and we
compare the behavior of the network during uniform os-
cillations and spatiotemporally more complex behavior.
A reference neuron is submitted to a chaotic input pro-
vided by the Lorenz model [37]:
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where Pr = 10, b = 8/3, r = 28, and ¢ = 0.03. The equa-
tion for the membrane potential of the reference neuron,
Xref, possesses a supplementary term:

ere_f _

o =15 (Xees — En) g(2). (8)

Here, the z variable of the Lorenz model is coupled to
the reference neuron using the transfer function:

g(z) = 1/[1 +exp (—0.65 z + 15)].
This is equivalent to a chaotic synaptic drive on the ref-
erence neuron.

Figure 11 shows the mutual information measured be-
tween the reference neuron and other neurons located at
increasing distances. The increasing time delay at which
the mutual information peaks indicates the propagation
of a wave of activity on the network, similar to the Vas-
tano and Swinney case [34]. The position of the peak of
mutual information, 7*, is represented as a function of
the distance, p, in Fig. 12(a) and is shown to increase
linearly with distance. Similar results were obtained for
different directions in the network. Thus there are con-
centric waves of activity, or target waves, that propa-
gate from the reference cell at a constant velocity, v,
which can be estimated from the slope of the curve in
Fig. 12(a). The velocity for a network in stable resting
state (©2; < 12.1) is approximatively identical to that
during uniform periodic conditions (12.1 < ©; < 14.35),

30 ~

I(p,7)

T (ms)

FIG. 11. Mutual information during chaotic forcing of the
network. The mutual information I(p,7) is calculated be-
tween a reference neuron (X;) and other neurons at increasing
distances (p). p = 3 (triangles) and p = 9 (circles) intercel-
lular distances are shown here. A peak for a time delay of
7" indicates the maximum of the wave of activity that propa-
gated from the reference neuron. Continuous curves indicate
the best fit of a normal distribution to these data. N = 400
Type 2 network with secondary-neighbor connectivity [same
parameters as in Fig. 6(e)].
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but decreases slightly during the spatiotemporal phase
€1 > 14.35, Fig. 12(b)].

As pointed out by Vastano and Swinney [34], informa-
tion transport can be defined if the mutual information
I(p,7) is assumed to be described as a normal distribu-
tion whose variance increases linearly with distance. In
this case, I(p, 7) is the solution of a diffusion equation.

In the present case, we assume that there is a normal
component in I(p, ) due to the propagating waves ema-
nating from the cell submitted to the external input. In
addition to this normal component, there are also other
components similar to Fig. 9(b), due to the spontaneous
activity of the network. This is also indicated by the
vanishing of the latter components for larger distances
p (circles in Fig. 11). From Fig. 11, it can also be seen
that the width of the mutual information peak increases
in function of the distance. As in the Vastano-Swinney
case, the variance of the peak, 02, increases linearly with
the distance p [Fig. 13(a)].

We therefore provided a direct fit of I(p, 7) using a nor-
mal distribution whose variance increases linearly with
distance, such as

(T—'r‘)2 ,
I(p,7) ~ exp T abep | (9)
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FIG. 12. Information transport in the network. (a) Posi-
tion of the maximum 7* of the mutual information as a func-
tion of distance p (in units of intercellular distances). The
linear relation indicates that the peak of mutual information
propagates with a constant velocity. The straight line shows
a linear regression, where the slope gives the inverse of the
velocity. (b) Velocity v, as estimated from (a), as a function
of the synaptic weight ©,. The velocity is expressed in units
of intercellular distance per ms.
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where Dy is a positive constant.
Through the change of variables r = v and t = p/v,
one obtains

2
I(r,t) ~ exp [_(T;Trt)] , (10)

where D = Dyv3. This expression corresponds to the
solution of a diffusion equation:
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FIG. 13. Transport coefficients of mutual information. (a)
Variance of the peak of mutual information, o2, as a function
of the distance in the network, p. There is a linear increase
of o2 with p, and the straight line represents a linear regres-
sion, where the slope is the information transport coefficient
Do. (b) Information transport coefficient Dy as a function of
synaptic weight ;. Dg is expressed in units of ms? (inter-
cellular distance)™!. (c) Diffusion coefficient of information.
The diffusion coefficient D is represented as a function of ;.
In (b) and (c), transport coefficients reach the highest values
during spatiotemporal chaos.
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Here, D is the diffusion coefficient of mutual information.

The change of variable made in Eq. (10) corresponds
to the measurement of the mutual information relative to
the peak of the wave of activity. Equation (11) therefore
describes the broadening of the mutual information by a
diffusion process.

The components of I(p,7) due to the spontaneous ac-
tivity induce some error in the estimation of information
transport properties, but nevertheless the diffusion coef-
ficient D could be estimated reliably [38]. D was eval-
uated following a similar procedure for various values of
the parameters. Figures 13(b) and 13(c) illustrate the de-
pendency between the transport coefficients Do and D,
and the synaptic weight ;. The transport coefficients
remain approximately constant when the network shows
a stable resting state or uniform periodic oscillations. On
the other hand, there is a sensible increase of Dy and D
when the network displays more complex spatiotemporal
behavior. The same procedure was applied to a Type 1
network with N = 100 for two values of ;. There was
also a sensible increase of D in the spatiotemporal phase.

DISCUSSION

Oscillatory activity in networks of excitatory and in-
hibitory neurons can arise from two basic mechanisms.
First, neurons can be provided with the appropriate set
of intrinsic voltage-dependent conductances (see Ref. [9])
that allows the membrane potential to oscillate. Second,
the highly nonlinear synaptic interactions may induce
oscillations in otherwise quiescent neurons. Numerous
experimental evidence indicate that both intrinsic and
synaptic properties play a role in the genesis of these
oscillatory phenomena [10].

In this paper, we have addressed the problem of the
genesis of oscillatory and complex phenomena in two-
dimensional networks of excitatory and inhibitory neu-
rons. In order to keep “minimal” conditions for generat-
ing these spatiotemporal behaviors, both intrinsic prop-
erties and connection architecture of the neurons were
reduced to the simplest cases. We discuss here the prop-
erties of the complex spatiotemporal behavior of these
networks as well as possible biological predictions or ex-
perimental applications.

Properties of complex spatiotemporal phenomena

The set of equations used is perfectly isotropic; all neu-
rons connect their neighbors with the same pattern of
connectivity, and with the same values of the synaptic
weights. Although the membrane equations for single
neurons were reduced to an extremely simple form, the
network could still display very complex behavior. The
use of isotropic networks is revealed as an extremely use-
ful approach that allowed us to determine some impor-
tant properties of the network behavior.
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The relatively simple architecture of the network al-
lowed us to estimate the importance of various param-
eters in generating oscillatory and complex phenomena.
The first factor is the locality of the connectivity. Lo-
cal connection patterns are essential here for generating
spatiotemporal phenomena. In general, increasing the
extent of the connectivity results in more stable uniform
oscillations (see Fig. 10), but if the size of the network
is taken large enough, similar instabilities as described
above are seen. Another extremely important parameter
is the time delay. None of the complex spatiotemporal
phenomena described here could be observed with zero
time delay. However, the dynamical behavior exhibited
by the network is relatively insensitive to the value of the
delay, provided it is taken in a reasonable range. In the
range of delays of about 1 to 5 ms, the network behaves
qualitatively the same, but the precise position of the
bifurcation points are affected by the value of the time
delay. Finally, the synaptic weights are extremely crit-
ical too. The interconnections between excitatory and
inhibitory neurons must be strong enough for the system
to display oscillations [16,24]. In these conditions, excita-
tory to excitatory interconnections, with corresponding
weight €2;, determine the transitions.

The particular role of the size of the network (the num-
ber of neurons) is particularly apparent in this model
because of its simple architecture. The absence of irreg-
ularity in the connection patterns, and the identity of the
connectivity across different sizes, allows us to consider
the size of the network as a particular parameter. Type 1
and Type 2 networks display a series of instabilities as
the size is increased, leading to spatiotemporal chaos. In
general, for a given size, there exists a range of values
of Q; for which uniform oscillations are stable. As the
size is increased, this range narrows and spatiotempo-
ral chaotic solutions becomes the most prominent behav-
ior. In addition, the spatial patterns of spatiotemporal
chaos display some similarities for different sizes [com-
pare Fig. 6(e) with Fig. 7(b)]. The main difference is
that for larger systems the same type of patterns develop
in a larger two-dimensional space. These patterns appar-
ently have characteristic length and time scales which are
independent of the size of the network. Intuitively, this
suggests that uniform oscillations are seen only for small
networks because the size is too small to generate these
patterns.

Comparison of the patterns displayed during spa-
tiotemporal chaos in the network [Fig. 7(a)] with a pre-
vious study [24] suggests a possible involvement of ho-
moclinic phenomena. Scrutiny of the traces of excitatory
neurons in Fig. 7(a) reveals that most neurons display
bursting oscillations. In a previous study [24], we showed
in the same model that bursting oscillations occur follow-
ing a homoclinic tangency to an unstable limit cycle. The
period and the amplitude of these bursting oscillations
are very similar to those observed during spatiotempo-
ral chaos, therefore suggesting that homoclinic phenom-
ena are involved in this type of spatiotemporally complex
dynamics, but further investigation would be needed to
demonstrate this point.

Although the present model is more complex than

other solvable models (see for example Refs. [17,39,40]),
it nevertheless allowed us to investigate the bifurcations
underlying oscillations and spatiotemporal chaos. The
system was first studied with N = M = 1 [24] and the
bifurcation diagram obtained was very similar as larger
systems. In the case of networks with N, M > 1, stability
analysis could be performed for the fixed points [16,23,28]
and the uniform periodic solutions [25]. The stability of
the fixed points was independent of the size of the sys-
tem and the periodic solutions exist in the same range
of Q;. However, in the network, if Q; is increased over
some critical value, the uniform periodic oscillation can
become unstable, giving rise to complex spatiotemporal
behavior. Both numerical simulations and stability anal-
ysis showed such an instability. Numerically, it was ob-
served that the transition between uniform oscillations
and spatiotemporal phenomena arises through intermit-
tentlike behavior (Fig. 4). Further augmentation of 2,
leads to spatiotemporal chaos.

As a consequence of its simple architecture, it is easy
to compare the present model with other studies of ho-
mogeneous networks of oscillators. Type 1 networks can
be seen as networks of oscillators with excitatory con-
nections. One of the most salient features of the present
model is the instability of the uniform periodic oscillation
as the sole factor of the size of the system is increased
(continuous curve in Fig. 3). In comparison, networks of
oscillators [31,41] also display an instability of the uni-
form oscillation, but in such a case, this instability arises
from a change in the coupling between oscillators. How-
ever, in the present model, the uniform oscillation is al-
ways stable with all-to-all connectivity but unstable if
connections are made locally, in accordance with some
models [20,40] but in contrast to others [19].

Finally, isotropic networks are also well suited for
investigating the decay of correlations, or for defining
transport properties. The estimation of the mutual infor-
mation and cross correlations showed a loss of correlation
with distance during spatiotemporal chaos. Information
transport [34] was defined by submitting one neuron in
the network to an irregular input. It was found that if
mutual information is assumed to obey a normal distri-
bution, then the broadening of the waves of activity can
be described by a diffusion equation. Interestingly, as the
excitability of the system is enhanced, the diffusion co-
efficient increases and reaches the highest values during
spatiotemporal chaos.

These properties are intriguingly similar to some as-
pects of fluid dynamics. Two of the main characteris-
tics of fluid turbulence are the loss of correlation with
distance and a significant increase in transport coeffi-
cients [42]. As these properties are also seen here qual-
itatively, it is therefore tempting to describe spatiotem-
poral chaos in a neural network as a form of “neuronal
turbulence”. In the same way that turbulence can be
seen as a state which maximizes the transport of various
quantities such as heat, matter, etc., it might be that
in networks of neurons, spatiotemporal chaos is a state
where the transport of information-related quantities is
optimal. The transfer of activity between neurons is the
highest during these complex dynamics, suggesting that



350 OSCILLATIONS, COMPLEX SPATIOTEMPORAL BEHAVIOR,. .. 1605

complex spatiotemporal behavior is seen for high values
of excitatory weights because neurons naturally adopt
a dynamical state in which the communication between
cells is optimized.

An interesting issue is whether the increase of infor-
mation transport during spatiotemporal chaos is specific
to the present model or if it is a general property. In
the latter case, the same property should be observed
in other model systems, like the Ginzburg-Landau equa-
tions or chemical turbulence [31]. In principle, the same
procedure as described here could be also realized ex-
perimentally in systems showing spatiotemporal chaos or
turbulent phenomena (see discussion below).

Biological predictions

It is to be reminded that homogeneous and isotropic
networks such as those studied here are certainly not bi-
ologically realistic. However, if one assumes that the
properties found in the present model are generic and
also found in systems with more complex architecture,
such as the cerebral cortex, then the present results can
suggest useful hypotheses or possible experimental veri-
fications of the properties found here.

First, a study of networks of oscillators with all-to-all
coupling [41] suggested that the behavior of firing rate-
based models might be generic to more realistic spiking
models. In particular, they showed that the longest wave-
length modes of a spiking model match closely those of
the firing rate analog of the same system. It is likely that
the instability of the uniform oscillation shown here, and
also observed in the network of oscillators [41], might also
subsist in models based on a more realistic synaptic in-
teraction, but further work is needed to demonstrate this
point.

Second, by analogy with the model of Wilson and
Cowan [15], the variables X; and Y; can be interpreted
as the fraction of excitatory or inhibitory cells active per
unit of time. The network could then be thought to rep-
resent a large array of interacting populations of neurons
rather than a few tens of hundreds of cells. As anatomical
data [26,43] show that inhibitory cells tend to send their
connections vertically, in contrast with the longer range
horizontal connectivity of some excitatory cells, Type 1
networks are a possible candidate for modeling popula-
tions of interacting cortical neurons. In this case, the

present Type 1 model shows that large networks with
isotropic architecture do not sustain synchronized rhyth-
micity, but rather show spatiotemporally complex phe-
nomena. As this model did not take into account the
intrinsic properties of cortical cells (reviewed in [44]), it
might be that intrinsic properties could play a role in sus-
taining stable synchronized oscillations in large networks
of excitatory and inhibitory neurons.

More realistic models should be drawn for addressing
these questions, by incorporating the typical laminated
structure of the cerebral cortex [26], the particular con-
nectivity of each layer, the various types of cortical neu-
rons, and their complex synaptic interactions and intrin-
sic properties [44].

Finally, as mentioned above, it is possible to provide
experimental measurements from some of the properties
that were estimated here. In particular, information
transport could be investigated experimentally with a
standard electrophysiological setup. An aperiodic electri-
cal stimuli [such as g(z) above] can be delivered through a
stimulating extracellular microelectrode, and the activity
can be recorded using two field potential electrodes; the
first one is the reference electrode and stays very close
to the stimulated site, and the second one is placed at
increasing distances. If the stimulus gives rise to a mea-
surable propagation of activity, then this setup should
allow us to estimate information transport coeflicients
using similar procedures as described in this paper.

As different oscillatory states are seen in brain activity
during sleep and wakefulness, it is unlikely that they are
characterized by the same spatiotemporal properties, as
indicated by the very different values of correlation di-
mension between wakefulness [5], sleep [3,6], or epileptic
seizures [4]. The methods used here could therefore be
useful to assess important properties of the spatiotem-
poral dynamics which might be complementary to those
provided by time-series analysis.
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FIG. 1. Two different types of architecture of a network of excitatory and inhibitory neurons. For each type of architecture
a few neurons are represented to illustrate the connectivity. Neurons are symbolized by shaded circles and connections by
straight lines (see legend). (a) Type 1 connectivity. The network consists of a series of pairs of excitatory and inhibitory
neurons arranged on a two-dimensional lattice. Connections between adjacent pairs are made between excitatory neurons only.
(b) Type 2 connectivity. Excitatory and inhibitory neurons are in the ratio of 75% to 25%, and are equally distributed on the
two dimensional network. For each type of architecture, only nearest-neighbor connections have been represented for simplicity.
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FIG. 6. Complex spatiotemporal patterns
in N = 100 and N = 400 networks. Suc-
cessive frames represent snapshots of the ac-
tivity of the system taken at fixed time in-
tervals. For each frame, only the activ-
ity of excitatory neurons is represented as
a two-dimensional array of shaded squares.
The value of the membrane potential for each
neuron is shown as a gray scale ranging in
ten steps from —75 mV (white) to 50 mV
(black). (a), (b) Rotating spiral waves with
a period of approximately 25 ms (4 ms be-
tween frames). Type 2 (a) and Type 1 (b)
networks with N = 100 and nearest-neighbor
connections. (c) Transient spiral wave (10
ms between frames). Type 2 network with
N = 400 and nearest-neighbor connections.
(d), (e) Spatiotemporal chaos (10 ms between
frames). Type 1 (d) and Type 2 (e) net-
works with V = 400 and secondary-neighbor
connectivity. All simulations were done with
91 = 15, Qz = Qa = 125, and Q4 = 0.



FIG. 7. Spatiotemporal chaos in a N = 6400 network.
(a) Membrane potential of ten excitatory neurons. From
top to bottom: four neighboring neurons and six randomly
chosen neurons. (b) Snapshots of activity of the system
(16 ms between frames from top to bottom). Type 2 sec-
ondary-neighbor connections with N = 6400, M = 1600,
Q1 = 15, 22 = 3 = 12.5, and 4 = 0. Numerous depo-
larizing waves are propagating in all directions, giving rise to
an irregular dynamics.



